"This is an equipment graveyard. It's a typical final resting place for medical equipment from hospitals in Africa. Now, why is this? Most of the medical devices used in Africa are imported, and quite often, they're not suitable for local conditions. They may require trained staff that aren't available to operate and maintain and repair them; they may not be able to withstand high temperatures and humidity; and they usually require a constant and reliable supply of electricity.
An example of a medical device that may have ended up in an equipment graveyard at some point is an ultrasound monitor to track the heart rate of unborn babies. This is the standard of care in rich countries. In low-resource settings, the standard of care is often a midwife listening to the baby's heart rate through a horn. Now, this approach has been around for more than a century. It's very much dependent on the skill and the experience of the midwife.
Two young inventors from Uganda visited an antenatal clinic at a local hospital a few years ago, when they were students in information technology. They noticed that quite often, the midwife was not able to hear any heart rate when trying to listen to it through this horn. So they invented their own fetal heart rate monitor. They adapted the horn and connected it to a smartphone. An app on the smartphone records the heart rate, analyzes it and provides the midwife with a range of information on the status of the baby. These inventors are called Aaron Tushabe and Joshua Okello.
Another inventor, Tendekayi Katsiga, was working for an NGO in Botswana that manufactured hearing aids. Now, he noticed that these hearing aids needed batteries that needed replacement, very often at a cost that was not affordable for most of the users that he knew. In response, and being an engineer, Tendekayi invented a solar-powered battery charger with rechargeable batteries, that could be used in these hearing aids. He cofounded a company called Deaftronics, which now manufactures the Solar Ear, which is a hearing aid powered by his invention."
[...]
What good is a sophisticated piece of medical equipment to people in Africa if it can't handle the climate there? Biomedical engineer Tania Douglas shares stories of how we're often blinded to real needs in our pursuit of technology -- and how a deeper understanding of the context where it's used can lead us to better solutions.
About the speaker
Tania Douglas · Biomedical engineering professor
Tania Douglas imagines how biomedical engineering can help address some of Africa's health challenges.
This is Beta! Help us out. Please share it out and give some feedback.
Add a review